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ABSTRACT

Results of tests to measure ice growth in natural

(flight) and artificial (icing wind tunnel) icing conditions are
presented. Ice thickness is measured using an ultrasonic
pulse-echo technique. Two icing regimes, wet and dry ice
growth, are identified and the unique ultrasonic signal
characteristics associated with these different types of ice

growth are described.

Ultrasonic measurements of ice growth on cylinders

and airfoils exposed to artificial and natural icing conditions
are presented. An accuracy of _-+0.5mm is achieved for ice
thickness measurement using the pulse-echo technique. The

performance of two-probe type ice detectors is compared to the
surface mounted ultrasonic system. The ultrasonically
measured ice accretion rates and ice surface condition (wet or

dry) are used to compare the heat transfer characteristics for
flight and icing wind tunnel environments. In general the heat
transfer coefficient is inferred to be higher in the wind tunnel
environment, not likely due to higher freestream turbulence

levels. Finally, preliminary results of tests to measure ice
growth on airfoil using an array of ultrasonic transducers are
describe_d. Ice profiles obtained during flight in natural icing
conditions are shown and compared with mechanical and
stereo image measurements.

1.0 INTRODUCTION

The direct measurement of ice thickness on critical

aircraft surfaces, in flight and on the ground, has proven to be
a difficult task. Current ice detectors generally measure the
accretion of ice on a probe and infer the accretion on other

aircraft components. In many applications this results in
significant uncertainty as to the actual ice accretion on critical
components. Recently, ultrasonic techniques have been
developed which allow the ice accreted on critical components

to be measured directly by a transducer imbedded in the
surface. This technology has significant implications for
operational use in measuring ice thickness and accretion rate in
flight and automatically controlling ice protection systems.
The technique also has potential applications in detecting
hazardous ground icing events. In addition, ultrasonic

techniques can be used to aid in the certification of aircraft for
flight in icing condition and in understanding the physics
which underlie the ice accretion problem.
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The purpose of this paper is to present an overview of

recent work on the measurement of ice thickness using
ultrasonic pulse-echo techniques. Additional ultrasonic

methods have been investigated including ice bond monitoring
by shear wave techniques and thin ice detection by pulse-echo
amplitude measurement. In the interest of brevity only the
pulse-echo results will be reviewed here. Experimental

measurements of ice growth in icing wind tunnel and flight
icing conditions are presented. The ultra-sonic pulse echo
technique is shown to provide the potential for the
development of an operational instrument. In addition, the
technique provides previously unobtainable resolution on the
temporal and spatial growth of ice accretion in simulated and

natural icing conditions. Finally, the unique capability of the
ultrasonic pulse-echo technique to detect the presence of liquid
water on an accreting ice surface allows the threshold between

wet and dry ice growth to be experimentally determined. It is
shown that this wet/dry threshold data may be used to infer
valuable information about the heat transfer from the ice

surface, and thus aid in understanding the ice accretion
process.
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Fig. 1 Ultrasonic pulse-echo thickness measurement
and typical ultrasonic pulse-echo signal in ice.
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2.0 ULTRASONIC PULSE-ECHO MEASUREMENT
TECHNIQUES.

2.1 ULTRASONIC PULSE-ECHO THICKNESS
MEASUREMENT

Ultrasonic pulse-echo measurement of ice thickness on
a surface is accomplished by emitting a brief compression or
shear wave from a small ultrasonic transducer mounted flush

with the accrefing surface (Fig. 1). The pulse travels through

the ice, is reflected at the ice/air interface and then returns to _.
the transducer as an echo signal. The time elapsed, Tp-e,
between the emission of the pulse from the transducer and the
return of the echo from the ice interface can then be used to

calculate the ice thickness, D, from the formula:

D =C. %._ (I)
2

Where C is the speed of propagation of the pulse-echo signal
in ice. In a previous study 1, the speed of propagation was
found to be insensitive to different types of ice (glaze, rime
and mixed) formed at typical flight airspeeds. Fig. 2 illustrates

the approximately constant speed of sound observed
experimentally in ice samples formed under different icing
conditions. A value of 3.8 mm/_s was used for the speed of
sound in ice for all the results presented in this paper.
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Fig. 2 Ice thickness vs. pulse-echo time constant
speed of sound for ice samples formed under
different icing conditions.

2.2 ULTRASONIC SIGNAL CHARACTERISTICS
FOR DRY ICE GROWTH

In cold conditions, all the droplets impinging at a given
location on a body freeze on impact and the ice s.urface formed
am"dry". During dry ice growth, the ice surface tends to
remain relatively smooth and simply increases in thickness.
The received echo, therefore, appears to translate in time with
a velocity proportional tothe accretion rate. This behavior is

illustrated in Fig. 3. Since the surface formed by dry ice
growth is typically smooth, a sharp, well-defined echo is
received, as shown in the figure.

2.3 ULTRASONIC SIGNAL CHARACTERISTICS
FOR WET ICE GROWTH

In warm conditions at temperatures just below 0 ° C,
the heat transfer from the accreting surface is insufficient to

completely freeze all the impinging droplets and liquid water
will be present on the ice surface. This form of ice accretion

will be referred to as "wet ice growth", and is characteristic of
glaze and mixed ice formation.
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Fig. 3 Ultrasonic signal characteristics for dry ice
growth.
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During wet ice growth the ice surface is covered, at
least partially, by a thin liquid layer. The ultrasonic pulse thus

encounters two separate interfaces: an ice/water interface and a
water/air interface, as shown in Fig. 4. Two echo signals are
therefore received by the transducer;, the fu'st from the
ice/water interface and a second, later echo from the water/air
interface. The echo received from the ice/water interface is

characteristically broader than the echoes received during rime
ice growth due to the rougher ice surface formed during glaze

icing. As in the rime ice case, this ice/water interface echo
translates in time as liquid freezes at the interface and increases
the accreted ice thickness.

Since the liquid layer over the ice surface is thin, and
its attenuation is low, multiple echoes are received from the
water/air interface following the ice/water echo. Due to

distortion of the liquid surface by impinging droplets and the
external flow, the detailed shape of these multiple water/air
echoes changes rapidly as the instantaneous local thickness
and surface orientation of the liquid layer varies. This rapid
variation in the received echo signal is absent when the ice
surface is dry. Wet and dry ice growth may thus be
distinguished by observing the time variation of the received
ultrasonic echo signals.

3.0 MEASUREMENT OF ICE GROWTH DURING
ARTIFICIAL AND NATURAL ICING CONDITIONS

This section presents results of tests to measure and
compare ice growth in both icing wind tunnel and icing
conditions. Ice thickness on the stagnation line of a cylinder
was measured as a function of the exposure time, using the

ultrasonic pulse-echo technique in the NASA Lewis Icing
Research Tunnel and on the NASA Icing Research aircraft.
Preliminary tests of digitally processed "real time" ultrasonic
measurement were conducted in the Boeing Icing Tunnel and
on the Boeing 757 test aircraft. In addition, the ultrasonic
signal characteristics were used to distinguish the presence of
liquid water on the accreting ice surface. These wet/dry ice
growth observations are then used to compare the heat transfer
processes occurring in the icing wind tunnel and in flight.

3.1 EXPERIMENTAL APPARATUS

The experimental apparatus used for both the NASA
Lewis Icing Research Tunnel (IRT) tests and the NASA
natural icing flight tests consisted of the following equipment:

1. A cylinder containing small ultrasonic
transducers mounted flush with the cylinder surface.

2. A pulser/receiver unit to drive transducers.

3. An oscilloscope to display the resulting pulse-
echo signal.

4. A video camera/recorder to record the pulse-

echo signal displaYed on the oscilloscope.

Fig. 5 schematically illustrates the configuration of the

experimental apparatus. For the IRT tests a 10.2 cm diameter
cylinder was instrumented with four ultrasonic transducers.
The transducers used had plane circular faces with element
diameters of either 0.6 or 0.3 cm. The transducers had center

frequencies of 1, 2.25 and 5 MHz; all were broadband,
heavily damped transducers. As expected, the 5 MHz
transducers provided the highest thickness resolution (due to
the shorter wavelength), and all results presented are for 5
MHz transducers. The transducers were placed on the
stagnation line and were located near the midsection of the

cylinder. A pulser/receiver unit provided the electrical signals
necessary to generate the ultrasonic pulse and amplify the
return echo.

60 _ B,_NOWIOTH. OUAL CHANNEL OSCILLOSCO_

wOEO CAMERA

_ [ PULSER / I_E_'EIVER

rO vlOEO I_ECO_OEI_ A

i

CYLINOER

C:NG CL_UO ULTRASONIC r_A_SOUC-'.,_S

_ FL.USH WITH CY.L.INOF-R

SL,RF_,CE

Fig. 5 Schematic of experimental apparatus
configuration.

The cylinder employed for the NASA natural icing
flight tests was an 11.4 cm diameter cylinder. This cylinder
was instrumented with two 0.6 cm diameter, 5 MHz

transducers, mounted in the stagnation line of the cylinder.
Again a single pulser/receiver unit was used to drive either
transducer.

In order to observe the ultrasonic signal characteristics
in detail, an oscilloscope was used in both series of NASA
tests to display the pulse-echo signals. A video camera was

used to permanently record the oscilloscope signal for
subsequent analysis. The video camera simultaneously
recorded the cylinder exposure time from an electronic clock.

Preliminary tests of a digitally processed "real time"
ultrasonic measurement techniques were conducted on a full
scale model of a 757 leading edge slat in the Boeing Icing
Tunnel. The slat was instrumented with commercially
available 5 MHz transducers. Single and dual element
transducers with polystyrene delay lines were tested. The
diameter of the exposed polystyrene face was 0.63 cm.

Transducer excitation and return echo signal conditioning was
provided by commercial ultrasonic pulser/receiver hardware.
A digital oscilloscope was used to capture return echoes and
measure the round-trip delay. A micro-computer subsequently
computed the ice thickness (approximately every 2.5 seconds)
and logged the data on a printer. In addition, the oscilloscope
pulse-echo waveforms were also video recorded to allow

visual validation of the computer processing.

The Boeing natural icing flight tests used custom 2.25
MHz transducers with an exposed diameter of approximately
1.3 cm. One transducer was mounted on an outboard leading

edge slat and another on a 7.6 cm diameter fared cylindrical
shaped mast extended approximately 40 cm from the

forwardmost passenger window as shown in Fig. 6. The
transducers were connected to a modified commercial

ultrasonic thickness gage which provided a digital display as
well as an analog thickness output. In addition, echoes were
monitored on an oscilloscope. Strip chart recordings were
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madeoftheaircraftaltitude,trueairspeed,outsideair
temperature(OAT),liquidwatercontent(LWC)andtheanalog
icethicknessoutput.Visualobservationsofawingmounted
"barber-pole"weremadetoconfu'mtheicethicknessreadings.

Fig.6 Installationoftheultrasonicdetectorinthe757
window.

3.1.1IcingResearchTunnelTests

Theinstrumentedcylinderwasverticallysuspended
fromtheroofoftheNASAIcingResearchTunnel(IRT),as
shownschematicallyinFig.7.Thecylinderwasexposedto
theicingcloud,andthepulse-echosignalsfromthe
transducersbeingcomparedrecordedusingthevideo-
camera/recorder.Eachexposurewasmadewithconstanticing
cloudparametersandtypicallylastedeightminutes.Atthe
completionofarun,theiceddiameterofthecylinderateach
transducerlocatedwasmeasuredmechanicallyusingapairof
outsidecalipers.Theicethicknessoverthetransducerswas
inferredfromthismeasurementforcomparisonwiththe
ultrasonicallymeasuredicethickness.Thccylinderwasthen
completelyde-icedinpreparationforthenextrun.Icegrowth
foratotaloffifteendifferenticingcloudparametersets,
rangingfromglazetorimeicingconditions,wasrecorded
usingtheultrasonicpulse-echosystem.
3.1.2 Boeing Icing Tunnel Tests

The 757 leading edge model spanned the tunnel at
approximately a 20 ° sweep angle. A total of 20 tests were
conducted. The test conditions covered a temperature range of

-28 ° C to +2 ° C; LWC of 0.2 to 0.9 gm/m 3 and airspeed from
i00 to 175 MPH. Droplet size (MVD) was gravitational 10 or

20 microns, depending upon LWC. The exposure time varied
from two to 15 minutes. Typically ice was allowed to accrete
until between 0.150 to 0.3.00 inches were present. The tunnei

was then opened and a manual measurement of the ice
thickness over the transducer was made using calipers.
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Fig. 7 Test cylinder installation for icing tunnel (IRT)
tests.
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3.1.3 Natural Icing Tests

Natural icing tests were conducted in flight from the
NASA Lewis Icing Research Aircraft, a De Havilland Twin
Otter. The 11.4 cm cylinder instrumented with ultrasonic
transducers was exposed to icing conditions at the end of an

extension post that was vertically extended through the roof of
the aircraft by an experiment carrier mounted in the aircraft
(see Fig.8). The cylinder midsection was located 53.3 cm into
the freestream when extended. The cylinder was typically

exposed throughout the entire icing encounter, the pulse echo

signal again being continuously displayed and recorded by the
oscilloscope/camera system. At the end of the encounter the
cylinder was retracted into the aircraft and the ice thickness
over the transducer measured using outside calipers. Four
research flights were conducted with the ultrasonic system
during the period March 30 to April 2, 1985.

The Boeing 757 flight tests were conducted on
February 28, 1987 from Boeing Field in Seattle. Four icing
encounters occurred at an altitude of approximately 10,000 ft.
Each encounter lasted from five to nine minutes and was

terminated by climbing above the icing conditions. Following
the last encounter, total ice accumulation was in excess of one

inch. The transducer mounted on the mast accurately tracked
ice accretions in excess of 1 inch. The slat mounted transducer

failed to perform as expected. This is thought to be due to an
inadequate transducer mounting arrangement which prevented
the direct bonding of accreted ice to the sensor.

5HHz' 025" Dia i_cers_I15" x t,-5" Dia.

_ Mff Ultras'"_ic
_N _ h:e Probe _ /

Ice Detectors Ii'_---=-__ ./ _/C'_
(PtR.A.M _ j_-ib-'jiL--'--_

& C,oud
,/_ "- _.4_,,=_ _,Droplet Probes

.._I "s "(_)'_(M VD)

LWC
HotWire

Fig. 8 Test cylinder installation for natural icing
(NASA Lewis Twin Otter aircraft) tests.

3.2 RESULTS AND DISCUSSION

3.2.1 Icing Research Tunnel Tests

Figs. 9 and 10 show ice thickness measured with the
ultrasonic system plotted against exposure time for two
different icing cloud parameter sets, labeled "heavy" and

"light" icing respectively. The heavy icing conditions
represent an icing cloud with a high liquid water content of
approximately 0.77 gm/m 3 and a large median volume droplet
size of 20 microns; whereas the light icing conditions represent
relatively lower values for both of these parameters. The

freestream airspeed was 102.8 m/see for both cases shown.
Ice growth at three different temperatures (-8.0 ° C,
-17.5 ° C and -28.6 ° C), is shown for both icing conditions.
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Ice growth under "heavy" icing tunnel
conditions.

The total ice accretion was mechanically measured with outside
calipers at the completion of each run and is also plotted, if known.
The accuracy of the ultrasonic pulse-echo thickness
measurements was found to be within 0.5 mm of the
accretion measured with the calipers for all runs where
mechanical measurements were obtained. This good
agreement between the mechanically measured thicknesses and
the ultrasonic measurements confirmed previous experimental
results which showed the speed of propagation of the
ultrasonic signal to be insensitive to widely varying icing
conditions.

The ice accretion rates measured in the IRT (given by
the slope of the thickness versus time curve) remained fairly
constant throughout each run. This behavior is a result of both
the constant icing cloud conditions in the tunnel and the
location of the transducer on the cylinder stagnation line

While observed accretion rates are relatively constant
throughout each run, the accretion rates differ significantly for
the different icing cloud conditions. Due to the higher
impinging mass flfix, the accretion rates measured under the
"heavy" icing conditions were greater than those observed
under the "light'"icing conditions at the same temperature. For
example at -28.6 ° C the accretion rate is 3.15 mm/min for the
heavy icing conditions while it was only 1.05 mm/min for the
"light" icing case. Of more interest is the effect of the cloud
temperature on the stagnation accretion rate. At the relatively
warm temperatures just below 0 ° C, the accretion rates for
both the heavy and light cases are low, and the ice growth is
observes to be wet. Under these conditions, the rate of heat
removal from the ice surface was sufficient to completely
freeze all the locally impinging droplets, liquid forms on the
accreting surface and ran back away from the stagnation
region. However, as the temperature of the icing cloud was
progressively reduced, the accretion rate was observed to
increase to a maximum value and then remain constant despite
further decreases in icing cloud temperature.
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Fig. 10 Ice growth under "light" icing tunnel
conditions.

The lower accretion rates observed at the warmer cloud
temperatures are due to liquid runback from the stagnation
regzon. As the cloud temperature is reduced, the rate of heat
removed from the ice surface increases, this results in the
freezing fraction (ratio of impinging to freezing water flux) and
the accretion rate increasing. For dry growth, the freezing
fraction is unity and the accretion rate is a maximum (for the
particular cloud parameters). This behavior is illustrated in
Fig. 1 I, which shows the average accretion rates measured for
the heavy and light icing condztions as a function of the cloud
temperature, T**. For the light icing case the accretion rate
increases with decreasing temperature to -17.5 {}C, at which
point dry ice growth is observed, the accretion rate then
remains constant as the icing cloud temperature is further
decreased to -28.6 ° C. However, for the heavy icing
conditions it can be seen that at -17.5 ° C the growth is stiU wet
and the accretion rate continues to increase from -17.5 ° C to -
28.6 ° C. For these "heavy icing" conditions the heat transfer
from the ice surface as still insufficient at -17.5°C to
completely freeze the high impinging mass flux, and hence wet
growth was observed. At -28.6 ° C though the ice growth is
dry and the accretion rate measured, 3.15 mm/min is therefore
the maximum value for those conditions.
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3.2.2 Boeing Icing Tunnel Tests

Fig. 12 shows an example of ice thickness measured

and processed in real time with the digitally analyzed ultrasonic
data. As can be seen in the data, the preliminary algorithms

used in this test required approximately 0.075" of ice before it
locked in. However, a clear reaction in the echo amplitude
was always observed within 5 seconds of spray initiation.
This amplitude behavior has been subsequently used for

ultrasonic measurement of thin ice accretions. The agreement
between final ultrasonic and mechanical ice thickness

measurements was _enerally good with most cases agreeing
to better than 10%. Those outliers which did occur were

trackable to problems with the preliminary signal processing
algorithm.
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Fig. 12 Digitally processed ice growth measurement.

3.2.3 Natural Icing Tests

Fig. 13 contains a summary of the time averaged icing
conditions during each of the four in-flight exposures of the
ultrasonic system obtained on the NASA Icing Research
Aircraft. The shape of the accreted ice at the completion of
each exposure was obtained from photographs of the iced
cylinder. Also shown are the f'mal ice thicknesses measured

with the ultrasonic system and the outside calipers. The
accuracy of the ulwasonic measurements is again seen to be
within _+0.5 mm of the mechanically measured ice thickness.

Fig. 14 is a plot of the ice thickness measured with the
ultrasonic system versus the cylinder exposure time, for
research flight 85-24. Ice pulse-echo data, and the average
accretion rate for the encounter was 0.88 mm/min.

Fig. 15 is a plot of icing cloud and ice accretion data
measured by existing instrumentation on the aircraft, also for

flight 85-24. The upper plot shows "icing rate" in mm/min
measured by Rosemount and PIRAM ice detectors. Also
shown is the ice accretion rate measured on the stagnation line
of the test cylinder by the ultrasonic system. This accretion

rate was determined by differentiating the measured ice
accretion (Fig. 14) with respect to time. The lower plot shows
the cloud liquid water content in gm/m 3 measured by a
Johnson-Williams hot-wire probe. Due to the relatively cold
cloud temperature and low liquid water contents observed

during this encounter, the icing rate is expected to be
approximately proportional to the cloud liquid water content.

From Fig. 15, it can be seen that three icing rate plots

(Rosemount, PIRAM and Ultrasonic) show overall similarity
to the LWC plot, (e.g., all contain a decrease in icing rate after

two minutes, corresponding to a decrease in the cloud liquid
water content). However, the magnitudes of the icing rates
indicated by the three instruments are marke, dly different, the
PIRAM and Rosemount respectively indicating average icing
rates of 2.45 and 1.96 ram/rain for the encounter while the
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average ultrasonically measured accretion rate is 0.88 mrn/min.
The ultrasonically measured icing rate is consistent with the
mechanically measured accretion on the test cylinder of 8.7
mm at the end of the ten minute exposure. The higher icing
rates recorded by the PIRAM and Rosemount systems appear
to be inconsistent with the cloud liquid water content measured
by the Johnson-Williams probe, a regression line analysis of
measured icing rate versus Johnson-Williams cloud liquid
water content was made which indicate that the PIRAM and
Rosemount systems respectively imply icing rates of 2.06 and
1.36 mm/min at zero liquid water content.
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Fig. 15 Comparison of ice accretion rates measured by
PIRAM, Rosemount and ultrasonic ice
detectors and cloud liquid water content
measured by a Johnson-Williams hot-wire
probe for flight 85-24.

The PIRAM and Rosemount systems are both probe-
type detectors that measure ice accumulation on a small,
protruding probe. The calibration of these systems depends
on the collection efficiency of the probe, which in turn varies
with the cloud droplet size distribution. Since th¢_ultrasonic
system is non-invasive, ice thickness and icing rate are directly
measured on the surface of interest and no calibration is
required. Referring againto Fig. 15, it can be seen that the
time variation of the liquid water content is recorded by the
ultrasonic system while the Rosemount and PIRAM plots do
not contain the same level of detail, particularly beyond four
minutes exposure time, with the Rosemount data showing an
apparent drift to a higher icing rate. The time response of
probe-type systems is generally limited by two factors: the
amount of ice necessary to initiate the icing signal and the need
to repeatedly thermally de-ice the probe. The response time of
both the PIRAM and Rosemount instruments is therefore
dependent on the severity of the icing conditions and also
physically limited by the time taken to de-ice the probe
(typically 5-7 seconds). The time response of the ultrasonic
system is not limited by the need for de-icing and does not

depend on the icing severity; it is only fundamentally limited
by the ultrasonic pulse repetition frequency, which is typically
several KHz.

Fig. 16 presents strip chart data from an 8 minute
period of the 757 flight test. The ultrasonically measured ice
accretion is the bottom trace in Fig. 16. The measured ice
accretion behavior is consistent with the measured liquid water
content, also shown in Fig. 16. Reliable measurements were
made to greater than 0.75 inches before the detector saturated.
The average ambient temperature during the encounter was
-15 ° C, the pressure altitude was 10,000 ft. and the true
airspeed was 250 KTS.
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Example of strip chart recordings of cloud
Liquid water content and ultrasonically
measured ice thickness for the Boeing 757
tests.

3.3 HEAT TRANSFER MEASUREMENTS FOR
AN ACCRETING ICE SURFACE

As discussed earlier, when the rate of heat removal
from the icing surface is insufficient to freeze all the impinging
droplets, liquid will form on the surface and the ice growth
will be wet. By experimentally measuring the type of ice
growth occurring (wet or dry) under particular icing cloud
conditions, it is possible to parametrically infer limits on the
heat transfer magnitude at the icing surface. A clear
understanding of the heat transfer is essential if accurate
analytic ice accretion models are to be developed. Due to
experimental difficulties associated with heat transfer
measurements on actual ice surfaces, local heat transfer
coefficient measurements have only been made around
wooden or foam models of typical ice shapes. In addition,
experimental measurements comparing local heat transfer
coefficients obtained in icing wind tunnels and in flight are
essential if natural icing conditions are to be accurately
simulated in icing wind tunnels. Very little experimental data
exists in this area.

This section presents a comparison of experimentally
measured wet and dry ice growth data with theoretical wet/dry
threshold curves calculated using a steady-state energy balance
for the stagnation region. The energy balance shown in Fig.
17 considers six modes of energy transport to and from the
icing surface, the most significant terms being the heat added
due to the latent heat of fusion and aerodynamic heating Cram-
rise"). The heat is removed primarily due to convection and
evaporation or sublimation. The ultrasonically measured wet
and dry ice growth data for the cylinders tested in the icing
wind tunnel and in flight are used to compare a series of heat
transfer coefficients for the cylinder stagnation region. Using
this approach, the importance of freestream turbulence and
surface roughness on the local heat transfer can be compared
for artificial and natural icing conditions.
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Fig. 17 Modes of energy transfer for an accredng ice
surface.

The heat transfer coefficients used are from a recent
experimental study by Van Fossen, et al2, in support of the
NASA icing research program. In the Van Fossen study, heat
transfer coefficients were measured for two different
freesucam turbulence levels, 0.5% and 3.5%, and for two
different.cylinder surface conditions, one smooth and one
roughened with grains of sand. A more complete discussion
of these heat wansfer models and the steady-state energy
balance used to calculate the wet/dry threshold curves is
contained in reference 3.

3.3.1 Icing Research Tunnel Results

Fig. 18 shows the ultrasonically measured ice growth
for six different icing conditions in the icing research tunnel.
The freestream velocity was 102.8 m/s (230 mph) for all six
runs shown. Also shown are four wet/dry threshold curves
calculated using the Van Fossen 3 heat transfer coefficients.
These curves arc plotted versus ambient temperature and were
calculated for a freestream velocity of 102.8 m/s (230 mph),
and a cylinder diameter of 0.I02 m (4 in). The four curves
shown thus represent the transition between wet and dry ice
growth calculated for the four different local heat transfer
coefficients implied by the Van Fossen data. If the local
impinging liquid water content exceeds this critical value for a
given ambient temperature then the ice growth is calculated to
be wet, and if the impinging liquid water content is less than
the critical value the ice growth is predicted to be dry. From
the figure it can be seen that the heat transfer coefficient that
best predicts the experimentally observed pattern of wet and
dry ice growth is that measured for the cylinder roughened
with sand and at a freestream turbulence level of 3.5%. While
dry ice growth was observed at -28.6°C and an impinging
liquid water content equal to 0.47 g/m 3, the heat transfer
coefficients for the 0.5% freestream turbulence level clearly
imply wet growth for these conditions. Thus it appears that
the 0.5% turbulence level heat transfer coefficients
underpredict the actual heat transfer in the icing tunnel, and are
therefore too low.

Since the rough surface, 3.5% freestream turbulence
heat transfer coefficient appeared to best approximate the actual
heat transfer occurring in the icing research tunnel (based on
the wet/dry ice surface data from th ultrasonic tests), this heat
transfer model was compared with other ultrasonic wet/dry ice
surface data obtained at different tunnel icing cloud conditions,
with similarly favorable results.

Based on the results presented in Fig. 18, it ap.pears
that the heat transfer coefficient model that best approxmaates
the actual heat transfer ooeurring in the icing research tunnel is
the 3.5% turbulence level, rough surface model. The actual
heat transfer coefficient is clearly greater than those applicable
at the low (0.5%) turbulence level and may be even greater
than that implied by the high (3.5%) turbulence level model.
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Fig. 18 Plot of impinging liquid water content vs.
cloud temperature showing ultrasonically
measured wet/dry ice growth and theoretical
wet/dry threshold curves for four different heat
transfer coefficients (V**= 102.8 m/see.).

3.3.2 Natural Icing Cloud Test Results

While constant icing conditions were maintained
throughout each exposure in the icing research tunnel, the
natural icing cloud conditions, most noticeably the liquid water
content, were not constant throughout each flight. Fig. 19
shows a plot of cloud liquid water content versus exposure
time for research flight 85-24. The liquid water content was
measured by a Johnson-Williams hot-wire probe located near
the nose of the aircraft (see Fig. 8). Also shown, are the
experimentally observed periods of dry, wet and transitional
ice growth, produced by the varying liquid water content. The
ultrasonic echo patterns received from the accreting ice surface
were used to determine if the ice growth was wet, dry or
transitional. Ice growth was characterized as transitional when
the time variation of the ultrasonic echo pattern was between
that characteristically observed for wet and completely dry ice
growth.

Fig. 20 is a plot of impinging liquid water content
versus cloud temperature. The experimentally observedice
growth regimes during the four research flights conducted are
shown. Note that during flights 85-24 and 85-25 the full
range of ice growth regimes were encountered with periods of
dry, transitional and wet ice growth observed. No dry ice
growth was observed during flights 85-22 and 85-23. Also
shown are the four wet/dry threshold curves calculated using
the four different Van Fossen heat transfer coefficients (0.5%
turbulence, rough and smooth surface; 3.5% turbulence,
rough and smooth surface). These curves were calculated for
the test cylinder diameter of 0.114 m and for the average flight
airspeed of 71.4 m/s and the average exposure altitude of 1613
m.
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Fig. 19 Plot of liquid water content (measured by the
Johnson-Williams probe) vs. exposure time for
flight 85-24 showing typical fluctuations
observed in natural icing conditions. Also

shown arc ultrasonic measured periods of wet,
dry, and transitional ice growth.

Figs. 19 and 20 illustrate the considerable variations
encountered in natural icing conditions, both during a

particular flight and between flights conducted on different
days. For example, the cloud temperature, liquid water
content and droplet size were roughly comparable for flights
85-24 and 85-25. However, different ranges of wet and dry

ice growth were observed, as indicated by the overlapping
experimental wet and dry growth ranges at the same impinging

liquid water content..The implication is that the heat transfer
differed between the two flights, both at nominally similar

icing conditions, but conducted on different days through
differentclouds.
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Fig. 20 Plot of impinging liquid water content vs.
cloud temperature showing wet, dry and
transitional ice growth regimes observed in

flights and theoretical wet/dry threshold curves
for four different heat transfer coefficients.

From the figure it can be seen that for flight 85-25 the
high (3.5%) turbulence level heat transfer coefficients
overpredict the observed heat transfer, based on the steady-
state model analysis. For this flight the low (0.5%) turbulence

level heat transfer coefficients appear appropriate since both of
these coefficients correctly predicts the observed wet and dry

regimes. The actual turbulence level applicable could be even
less than 0.5% based on the location of the observed wet and

dry growth regimes.

The experimentally observed ice growth regimes
during flight 85-24 are consistent with the wet/dry threshold
predicted by the 3.5% turbulence level, rough surface heat
transfer coefficient. For this flight the low (0.5%) turbulence

level models incorrectly predict wet growth for impinging
liquid water content levels where dry growth was
experimentally observed. Thus, in contrast to flight 85-25, the
tow turbulence level appears to be too low, and the 3.5%

turbulence level model gives acceptable results.

The resultsof thenaturalicingtestsalsoindicatethe
heattransferoccurringinnaturalicingconditionsmay vary
from day today despitesimilaricingconditions.One reason
forthisvariationmay be due todifferenticingcloudturbulence
levels.Based on the limitedamount offlighttestdataavailable

itappearsthatingeneralthe appropriateturbulencelevelfor
naturalicingconditionsissomewhat lower thanthe 3.5%+
levelinferredfortheicingresearchtunnel.Thisresultis
consistentwithpreviousexperimentalcomparisons between

theicingresearchtunneland flight.For thesereasons,care
should be takenin extrapolatingtheresultsoficingwing
tunnelteststo "similar"naturalicingcloudconditions.

4.0 MEASUREMENT OF ICE SHAPE BY AN
ULTRASONIC ARRAY

Currentlya comprehensive testingprogram is
under .waytomeasure and compare ice accretion in naturaland
artificial wind tunnel icing conditions. This ice-growth data

base will enable a quantitative comparison to be made between
flight and icing wind tunnel tests. In addition, this temporal
and spatial ice accretion data will be used to support

development and validation of analytic icing models and
scaling laws. This section describes the experimental
apparatus and testing procedure for these tests, and presents
preliminary results of ice growth measurements made on an
airfoil in natural icing conditions 4.
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Fig. 21 Wing-cuff and ultrasonic array installation on
NASA Lewis Twin Otter aircraft.
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4.1 EXPERIMENTAL APPARATUS

For the natural icing flight tests a De HaviUand DHC-6

airfoil section was instrumented with an array of 9 ultrasonic
transducers, as shown in Fig. 21 The transducers were all 5

MHz, broadband, heavily damped transducers with 0.6 cm
element diameters. The airfoil section was attached to the

starboard wing of the NASA Lewis Icing Research Aircraft, a
De Havilland DHC-6 Twin Otter. The airfoil section, or cuff,

thus protruded approximately 3 in forward of the aircraft wing
section.

The NASA aircraft was also equipped with a stereo

camera system consisting of two 70 mm cameras mounted in
the nose of the aircraft (see Fig. 21). The cameras produce

stereo image pairs of the ice accretion on the wing cuff. These
images are then photogrammetrically analyzed post-flight, and
allow the ice accretion to be measured with a resolution of

approximately _-_4-0.03in.

Fig. 22 schematically illustrates the ultrasonic system

installation for the natural icing flight tests. The 9 ultrasonic
transducers in the wing cuff were sequentially scanned using a
multiplexing pulser/receiver unit. The pulse-echo signals were
displayed on a broadband oscilloscope and a video camera
focused on the oscilloscope screen provided a permanent
record of these signals. Also within the camera's field of view
were an electronic watch to provide time synchronization with

other icing data recorded onboard the aircraft, and an LED
display to indicate the current active transducer in the array.
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OSCILLOSCOPE

CLOCK &
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Fig. 22 Schematic of ultrasonic array equipment
configuration.

4.2 TESTING

Since the instrumented wing cuff was permanently
exposed on the aircraft wing, the ultrasonic system was

activated from take-off to landing. Typically the multiplexing
rate was set to approximately two seconds per transducer (i.e.,
each transducer was "active" for two seconds), so that four

complete scans of the array were completed every minute.

In addition to the ultrasonic ice thickness
measurements, stereo photographs of the wing cuff accretion

were also taken during each encounter. However, adequate
stereo photographs could not be obtained while the aircraft
was inside the icing cloud, stereo photographs of the ice

growth were therefore only taken outside the cloud at fairly
widely spaced time intervals. Typically two or three separate
stereo pairs were obtained documenting the ice growth during
the icing encounter.

Since the wing cuff was not equipped with any ice
protection system, in most cases it was possible to
mechanically measure the final ice accretion on the wing cuff
after landing using vernier calipers. Nine research flights were
conducted with the ultrasonic system during the period

February to March 1986. Due to the weather conditions
during that period rime ice accretions were observed primarily.

4.2.1 Results

Fig. 23 shows a typical ice growth profile history
obtained from the ultrasonic array. The data were from

research flight 86-31 which had a cold average tem..perature of
-10 ° C and a low liquid water content of 0.06 g/m s. The data
are presented in the form of successive ice profiles. These
profiles were constructed by fairing a curve through the
"point" thickness measurements from the array transducers. A
total of six profiles are shown, with six minutes between each
profile. The time at which the profiles were measured is

indicated on the lower plot of the cloud liquid water content
during the flight.
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Fig. 23 Ultrasonically measured ice profiles for flight
86-31.
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The ultrasonically measured profdes show the ice
shape to be relatively conformable to the leading edge
throughout the encounter. Thickness measurements from
transducers B and G, located near the edges of the accretion,
were not possible after the second profile. This was because
the slope of the ice surface above these transducers, relative to

the airfoil surface, became too large, reflecting the return echo
away from the transducer and significantly reducing the
received echo strength. Increasing the receiver gain in this

situation would alleviate this problem; however, varying the
receiver gain between transducers was not practical with the
single multiplexed pulser/receiver used for these tests. Since a

single "optimum" gain had to be used, this "edge" effect
dropout of the echo signal was often unavoidable.

The ice profiles in Fig. 23 illustrate the non-uniform

growth rate throughout the encounter. The fhst three profiles
all show approximately equal growth, corresponding to the
roughly constant average liquid water content during this
period. The higher liquid water content in the interval between

profiles 3 and 4 results in more growth, as evidenced by the
larger profile spacing. Following profile 4 the liquid water
content falls, and as a result prof'des 5 and 6 show little further
growth.

Fig. 24 illustrates the final ice shape accreted on the
wing cuff at the completion of flight 86-31. Three separate
measurements of the fmal ice profile are shown. The open
circles represent thickness readings obtained from the stereo
photographic analysis, while the crosses indicate

measurements made with vernier calipers after landing. The
final ultrasonic ice thickness measurements (from transducers

C, D, E, and F) are shown as a solid line on the figure. The
agreement between all three of these independent
measurements is within 0.5 mm, with a final ice thickness of
approximately 9 mm indicated.

5.0 CONCLUSION

In conclusion, ultrasonic pulse-echo measurement
techniques are seen to offer the potential for the development

of an operational ice detector, as well as providing a valuable
tool for better understanding and documenting that ice
accretion process.
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